Skip to main content
Version: 1.0

Cadence Anti-Patterns

This is an opinionated list of issues that can be improved if they are found in Cadence code intended for production.

Avoid using authorized account references as a function parameter

Problem

A developer may choose to authenticate or perform operations for their users by using the users' account addresses. In order to do this, they might add a parameter to a function which has an authorized account reference type (auth(...) &Account), as an authorized account reference can only be obtained by signing a transaction.

This is problematic, as the authorized account reference allows access to some sensitive operations on the account, for example, to write to storage, which provides the opportunity for bad actors to take advantage of.

Example:


_37
...
_37
// BAD CODE
_37
// DO NOT COPY
_37
_37
// Imagine this code is in a contract that uses a `auth(Storage) &Account` parameter
_37
// to authenticate users to transfer NFTs
_37
_37
// They could deploy the contract with an Ethereum-style access control list functionality
_37
_37
access(all) fun transferNFT(id: UInt64, owner: auth(Storage) &Account) {
_37
assert(owner(id) == owner.address)
_37
_37
transfer(id)
_37
}
_37
_37
// But they could upgrade the function to have the same signature
_37
// so it looks like it is doing the same thing, but they could also drain a little bit
_37
// of FLOW from the user's vault, a totally separate piece of the account that
_37
// should not be accessible in this function
_37
// BAD
_37
_37
access(all) fun transferNFT(id: UInt64, owner: auth(Storage) &Account) {
_37
assert(owner(id) == owner.address)
_37
_37
transfer(id)
_37
_37
// Sneakily borrow a reference to the user's Flow Token Vault
_37
// and withdraw a bit of FLOW
_37
// BAD
_37
let vaultRef = owner.borrow<&FlowToken.Vault>(/storage/flowTokenVault)!
_37
let stolenTokens <- vaultRef.withdraw(amount: 0.1)
_37
_37
// deposit the stolen funds in the contract owners vault
_37
// BAD
_37
contractVault.deposit(from: <-stolenTokens)
_37
}
_37
...

Solution

Projects should find other ways to authenticate users, such as using resources and capabilities as authentication objects. They should also expect to perform most storage and linking operations within transaction bodies rather than inside contract utility functions.

There are some scenarios where using an authorized account reference (auth(...) &Account) is necessary, such as a cold storage multi-sig, but those cases are rare and such usage should still be avoided unless absolutely necessary.

Public functions and fields should be avoided

Problem

Be sure to keep track of access modifiers when structuring your code, and make public only what should be public. Accidentally exposed fields can be a security hole.

Solution

When writing your smart contract, look at every field and function and make sure that require access through an entitlement (access(E)), or use a non-public access modifier like access(self), access(contract), or access(account), unless otherwise needed.

Capability-Typed public fields are a security hole

This is a specific case of "Public Functions And Fields Should Be Avoided", above.

Problem

The values of public fields can be copied. Capabilities are value types, so if they are used as a public field, anyone can copy it from the field and call the functions that it exposes. This almost certainly is not what you want if a capability has been stored as a field on a contract or resource in this way.

Solution

For public access to a capability, place it in an accounts public area so this expectation is explicit.

Public admin resource creation functions are unsafe

This is a specific case of "Public Functions And Fields Should Be Avoided", above.

Problem

A public function on a contract that creates a resource can be called by any account. If that resource provides access to admin functions then the creation function should not be public.

Solution

To fix this, a single instance of that resource should be created in the contract's initializer, and then a new creation function can be potentially included within the admin resource, if necessary.

Example


_36
// Pseudo-code
_36
_36
// BAD
_36
access(all) contract Currency {
_36
access(all) resource Admin {
_36
access(all) fun mintTokens()
_36
}
_36
_36
// Anyone in the network can call this function
_36
// And use the Admin resource to mint tokens
_36
access(all) fun createAdmin(): @Admin {
_36
return <-create Admin()
_36
}
_36
}
_36
_36
// This contract makes the admin creation private and in the initializer
_36
// so that only the one who controls the account can mint tokens
_36
// GOOD
_36
access(all) contract Currency {
_36
access(all) resource Admin {
_36
access(all) fun mintTokens()
_36
_36
// Only an admin can create new Admins
_36
access(all) fun createAdmin(): @Admin {
_36
return <-create Admin()
_36
}
_36
}
_36
_36
init() {
_36
// Create a single admin resource
_36
let firstAdmin <- create Admin()
_36
_36
// Store it in private account storage, so only the admin can use it
_36
self.account.storage.save(<-firstAdmin, to: /storage/currencyAdmin)
_36
}
_36
}

Do not modify smart contract state or emit events in public struct initializers

This is another example of the risks of having publicly accessible parts to your smart contract.

Problem

Data structure definitions in Cadence currently must be declared as public so that they can be used by anyone. Structs do not have the same restrictions that resources have on them, which means that anyone can create a new instance of a struct without going through any authorization.

Solution

Any contract state-modifying operations related to the creation of structs should be contained in resources instead of the initializers of structs.

Example

This used to be a bug in the NBA Top Shot smart contract, so we'll use that as an example. Before, when it created a new play, it would initialize the play record with a struct, which increments the number that tracks the play IDs and emits an event:


_23
// Simplified Code
_23
// BAD
_23
//
_23
access(all) contract TopShot {
_23
_23
// The Record that is used to track every unique play ID
_23
access(all) var nextPlayID: UInt32
_23
_23
access(all) struct Play {
_23
_23
access(all) let playID: UInt32
_23
_23
init() {
_23
_23
self.playID = TopShot.nextPlayID
_23
_23
// Increment the ID so that it isn't used again
_23
TopShot.nextPlayID = TopShot.nextPlayID + 1
_23
_23
emit PlayCreated(id: self.playID, metadata: metadata)
_23
}
_23
}
_23
}

This is a risk because anyone can create the Play struct as many times as they want, which could increment the nextPlayID field to the max UInt32 value, effectively preventing new plays from being created. It also would emit bogus events.

This bug was fixed by instead updating the contract state in the admin function that creates the plays.


_34
// Update contract state in admin resource functions
_34
// GOOD
_34
//
_34
access(all) contract TopShot {
_34
_34
// The Record that is used to track every unique play ID
_34
access(all) var nextPlayID: UInt32
_34
_34
access(all) struct Play {
_34
_34
access(all) let playID: UInt32
_34
_34
init() {
_34
self.playID = TopShot.nextPlayID
_34
}
_34
}
_34
_34
access(all) resource Admin {
_34
_34
// Protected within the private admin resource
_34
access(all) fun createPlay() {
_34
// Create the new Play
_34
var newPlay = Play()
_34
_34
// Increment the ID so that it isn't used again
_34
TopShot.nextPlayID = TopShot.nextPlayID + UInt32(1)
_34
_34
emit PlayCreated(id: newPlay.playID, metadata: metadata)
_34
_34
// Store it in the contract storage
_34
TopShot.playDatas[newPlay.playID] = newPlay
_34
}
_34
}
_34
}